跳到主要內容

阿里巴巴發布 WorldPM 系列模型!


阿里巴巴集團旗下 Qwen 團隊宣布發表 WorldPM 系列全新偏好建模模型,包括 WorldPM-72B 及其衍生版本 WorldPM-72B-HelpSteer2、WorldPM-72B-RLHFLow、WorldPM-72B-UltraFeedback 等。這項聲明引起了全球人工智慧開發者社群的廣泛關注,被認為是偏好建模領域的重大突破。

WorldPM:偏好建模的新探索

WorldPM(世界偏好建模)是Qwen在偏好建模領域的最新成果。根據官方介紹,該模型透過對超過1500萬個偏好資料點的訓練,驗證了偏好建模與語言建模遵循類似的縮放規律。這項發現表明,隨著數據和模型規模的擴大,偏好模型可以學習統一的偏好表示,從而顯著提高監督學習的表現。

WorldPM-72B 系列擁有 72 億個參數規模,專為評估和優化其他模型的輸出而設計。官方表示,基於WorldPM進行微調比從零開始訓練有顯著提升效能,尤其在需要捕捉人類偏好的場景下表現優異。這使其成為強化學習和監督微調的理想工具,為開發人員提供模型最佳化的有效途徑。

開源策略:賦能全球開發者

Qwen 始終秉持開源精神; WorldPM 系列模型全部採用 Apache2.0 授權協議發布,現已在 Hugging Face 上開放供全球開發者免費下載使用。這項開放策略不僅降低了技術門檻,也進一步鞏固了Qwen在全球開源AI生態系統中的領導地位。 X平台的開發者回饋將WorldPM的發布描述為“開源模型生態系統的新里程碑”,引發了熱烈的討論,尤其是在監督學習和偏好評估領域。

值得注意的是,WorldPM 並不是一個通用的對話模型,而是專注於為其他模型提供偏好評分和最佳化指導。例如,開發人員可以使用 WorldPM-72B 對生成式 AI 的回應進行評分,從而提高特定任務的模型效能。這種專業化的定位使其在人工智慧發展鏈中發揮關鍵作用。

技術亮點:平衡規模與效率

在 WorldPM 的開發過程中,Qwen 團隊從公共論壇收集了多樣化的偏好數據,涵蓋了多個使用者社區,以確保跨不同文化和語言背景的適應性。 WorldPM 的訓練資料規模為 1,500 萬,結合 15 億至 720 億個參數的模型架構,展現出強大的泛化能力。官方技術報告顯示,WorldPM 在對抗性評估中表現優異,測試損失呈現冪律下降趨勢,顯示模型可以有效識別包含故意錯誤的答案,以及不相關或不完整的答案。

此外,WorldPM 中風格偏見的優化值得關注。隨著模型規模的擴大,WorldPM 逐漸表現出風格中立的特徵,克服了主觀評估中常見的偏見問題。這使得它在客觀領域表現尤為出色,尤其是在編碼和數學等需要精確推理的任務中展現出明顯的優勢。

https://kopyai.com/zh-tw/latest/view/type.news/0/31

Picture Source:

Alibaba Cloud

留言

這個網誌中的熱門文章

美國公布 2025 年六月非農就業人數

美國勞工統計局今天報告稱,6 月非農業就業總人數增加了 14.7 萬人,失業率基本持平於 4.1%。州政府和醫療保健領域的就業機會增加。聯邦政府部門的就業機會持續減少。 本新聞稿提供的統計數據來自兩項月度調查。 家庭調查以人口統計特徵衡量勞動力狀況,包括失業率。 機構調查以行業衡量非農業就業人數、工時和收入。 家庭調查數據 6月份,失業率為 4.1%,失業人數為 700 萬,兩者皆變化不大。自2024年5月以來,失業率一直維持在 4.0% 至 4.2% 的窄幅區間內。 在主要勞動族群中,非裔美國人(6.8%)的失業率在6月有所上升,而成年女性(3.6%)和白人(3.6%)的失業率則下降。成年男性(3.9%)、青少年(14.4%)、亞裔(3.5%)和西班牙裔(4.8%)的失業率在當月幾乎沒有變化。 6 月份,長期失業人數(失業 27 週或以上)增加了 19 萬,達到 160 萬,基本上抵消了上個月的降幅。長期失業者佔所有失業人口的 23.3%。 6 月份,勞動參與率基本維持不變,為 62.3%,就業人口比率維持在 59.7%。 6 月份,因經濟原因從事兼職工作的人數為 450 萬,基本維持不變。這些人原本更傾向於全職工作,但由於工作時間減少或無法找到全職工作,他們只能從事兼職工作。 6 月份,目前希望就業但未加入勞動力的人數基本保持不變,為 600 萬人。這些人未被計入失業人數,因為他們在調查前 4 週內沒有積極尋找工作,或無法接受工作。 在希望就業但未加入勞動力隊伍的人數中,6 月處於邊緣就業狀態的人數增加了 23.4 萬人,達到 180 萬人。這些人希望工作,並且能夠工作,在過去 12 個月的某個時間點尋找工作,但在調查前 4 週內沒有尋找工作。灰心喪志的工人(邊緣就業人群中的一部分,他們認為沒有工作機會)的人數在 6 月增加了 25.6 萬人,達到 63.7 萬人。 機構調查數據 6月份非農業就業總人數增加了 14.7 萬個,與過去 12 個月平均每月增加 14.6 萬個的水平持平。6月份,州政府和醫療保健領域的就業機會增加。聯邦政府的就業機會持續減少。 6月政府就業機會增加了 7.3 萬個。州政府就業機會增加了4.7萬個,主要集中在教育領域(增加了4萬個)。地方政府教育領域的就業機會持續增加(增加了2.3萬個)。聯邦政府就業機會持續減少(減少了7千個),自1月...

DeepSeek-V3.1 發布,邁向 AI Agent

DeepSeek-V3.1 在 DeepSeek-V3.1-Base 的基礎上進行後訓練,後者基於原始 V3 基礎檢查點,通過兩階段長上下文擴展方法構建,遵循原始 DeepSeek-V3 報告中概述的方法。 DeepSeek 透過收集更多長文件並大幅擴展兩個訓練階段來擴展資料集。32K 擴展階段的標記數量增加了 10 倍,達到 6,300 億個標記,而 128K 擴展階段的標記數量增加了 3.3 倍,達到 2,090 億個標記。此外,DeepSeek-V3.1 使用 UE8M0 FP8 規模資料格式進行訓練,以確保與微尺度資料格式相容。 DeepSeek-V3.1 是一個同時支持思考模式和非思考模式的混合模型。相較於上一版本,本次升級帶來了多個方面的改進: 混合推理:思考與非思考-一個模型,兩種模式 更快的思考:DeepSeek-V3.1-Think 與 DeepSeek-R1-0528 相比,可以在更短的時間內找到答案 更強大的代理商技能:後製訓練可提高工具使用率和多步驟代理任務 DeepSeek-V3.1 模型提升了工具使用、程式碼生成和推理效率,在高難度基準測試中實現了與 DeepSeek-R1 相當的效能,同時響應速度更快。它支援結構化工具呼叫、代碼代理和搜尋代理,適用於研究、編碼和代理工作流程。 工具和代理程式升級 在 SWE / Terminal-Bench 上獲得更好的結果 針對複雜搜尋任務的更強大的多步驟推理 思考效率大幅提升 模型更新 V3.1 基礎:在 V3 基礎上繼續對 840B 個 token 進行預訓練,以進行長上下文擴展 Tokenizer 和聊天範本已更新 - 新的 tokenizer 設定: https://huggingface.co/deepseek-ai/DeepSeek- V3.1/blob/main/tokenizer_config.json V3.1 基礎開源權重: https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base V3.1 開源權重: https://huggingface.co/deepseek-ai/DeepSeek-V3.1 價格變動 新定價開始及非高峰折扣結束時間為 2025 年 9 月 5 日 16:00(UTC 時間) 在此之前,API 遵循當前定價 ...

Multiverse Computing 推出微型高性能 AI 模型

據公司新聞稿稱,Multiverse Computing 表示已經解決了長期困擾人工智慧的一個問題:在不損失效能的情況下縮小模型。 這家總部位於西班牙的公司週四發布了名為 "Model Zoo" 的產品,這是一系列 "奈米模型",據稱這些模型可以在中等硬體上本地運行,同時性能可匹敵甚至超越更大型的系統。 此次發表的產品包括兩款新產品——ChickenBrain 和 SuperFly,旨在證明在人工智慧領域,規模越大並不一定越好。 ChickenBrain 是 Meta 的 Llama 3.1 大型語言模型的精簡版,Multiverse 表示,該模型比通常所需的計算資源小 3700 倍。儘管如此,該模型在 MMLU Pro、MATH500、GSM8K 和 GPQA Diamond 等行業基準測試中仍優於 Llama 3.1 8B。 該公司在 MacBook Pro 和低成本 Raspberry Pi 等日常設備上對其進行了測試,表明它無需專門的雲端基礎設施即可運行。 SuperFly 較小,基於開源的 SmolLM2 135 模型,僅有 9,400 萬個參數。 Multiverse 表示,它足夠小,可以容納兩隻蒼蠅的神經容量,比雞腦小 15000 倍。該模型旨在實現無需互聯網連接即可運行的對話式 AI,因此非常適合嵌入到消費產品和車輛中。 該公司指出,SuperFly 可在智慧家電等領域實現直接應用,無需將資料傳送到雲端即可實現語音控制。這將使洗衣機或冰箱即使在離線狀態下也能回應簡單的語言指令。在汽車領域,它可以為車載助理提供動力,使其在沒有蜂窩信號覆蓋的區域也能繼續運行,處理導航、氣候和音頻任務。 https://theaiinsider.tech/2025/08/15/multiverse-computing-reports-it-shrinks-ai-models-without-sacrificing-power/ Picture Source: Multiverse Computing